
Vinkkaa tuotetta kavereillesi:
Hypothesis-based Image Segmentation: a Machine Learning Approach
Alexander Denecke
Tilattu etävarastosta
Hypothesis-based Image Segmentation: a Machine Learning Approach
Alexander Denecke
This thesis addresses the ?gure-ground segmentation problem in the context of complex systems for automatic object recognition. Firstly the problem of image segmentation in general terms is introduced, followed by a discussion about its importance for online and interactive acquisition of visual representations. Secondly a machine learning approach using arti?cial neural networks is presented. This approach on the basis of Generalized Learning Vector Quantization is investigated in challenging scenarios such as the real-time ?gure-ground segmentation of complex shaped objects under continuously changing environment conditions. The ability to ful?ll these requirements characterize the novelty of the approach compared to state-of-the-art methods. Finally the proposed technique is extended in several aspects, which yields a framework for object segmentation that is applicable to improve current systems for visual object learning and recognition.
Media | Kirjat Paperback Book (Kirja pehmeillä kansilla ja liimatulla selällä) |
Julkaisupäivämäärä | torstai 7. kesäkuuta 2012 |
ISBN13 | 9783838133713 |
Tuottaja | Südwestdeutscher Verlag für Hochschulsch |
Sivujen määrä | 164 |
Mitta | 150 × 10 × 226 mm · 262 g |
Kieli | German |
Katso kaikki joka sisältää Alexander Denecke ( Esim. Paperback Book )