Hyperspherical Harmonics: Applications in Quantum Theory - Reidel Texts in the Mathematical Sciences - John Avery - Kirjat - Kluwer Academic Publishers - 9780792301653 - sunnuntai 30. huhtikuuta 1989
Mikäli Kansi ja otsikko eivät täsmää, on otsikko oikein

Hyperspherical Harmonics: Applications in Quantum Theory - Reidel Texts in the Mathematical Sciences 1989 edition

John Avery

Hinta
€ 192,49

Tilattu etävarastosta

Arvioitu toimitus pe - ti 6. - 17. joulu
Joululahjoja voi vaihtaa 31.1. asti
Lisää iMusic-toivelistallesi

Hyperspherical Harmonics: Applications in Quantum Theory - Reidel Texts in the Mathematical Sciences 1989 edition

where d 3 3)2 ( L x - -- i3x j3x j i i>j Thus the Gegenbauer polynomials play a role in the theory of hyper spherical harmonics which is analogous to the role played by Legendre polynomials in the familiar theory of 3-dimensional spherical harmonics; and when d = 3, the Gegenbauer polynomials reduce to Legendre polynomials. The familiar sum rule, in 'lrlhich a sum of spherical harmonics is expressed as a Legendre polynomial, also has a d-dimensional generalization, in which a sum of hyper spherical harmonics is expressed as a Gegenbauer polynomial (equation (3-27»: The hyper spherical harmonics which appear in this sum rule are eigenfunctions of the generalized angular monentum 2 operator A , chosen in such a way as to fulfil the orthonormality relation: VIe are all familiar with the fact that a plane wave can be expanded in terms of spherical Bessel functions and either Legendre polynomials or spherical harmonics in a 3-dimensional space. Similarly, one finds that a d-dimensional plane wave can be expanded in terms of HYPERSPHERICAL HARMONICS xii "hyperspherical Bessel functions" and either Gegenbauer polynomials or else hyperspherical harmonics (equations ( 4 - 27) and ( 4 - 30) ) : 00 ik·x e = (d-4)!!A~oiA(d+2A-2)j~(kr) C~(~k'~) 00 (d-2)!!I(0) 2: iAj~(kr) 2: Y~ (["2k) Y (["2) A A=O ). l). l) J where I(O) is the total solid angle. This expansion of a d-dimensional plane wave is useful when we wish to calculate Fourier transforms in a d-dimensional space.


256 pages, biography

Media Kirjat     Hardcover Book   (Sidottu kirja kovilla kansilla sekä suojakannella)
Julkaisupäivämäärä sunnuntai 30. huhtikuuta 1989
ISBN13 9780792301653
Tuottaja Kluwer Academic Publishers
Sivujen määrä 256
Mitta 155 × 235 × 17 mm   ·   562 g
Kieli English  

Näytä kaikki

Lisää tuotteita John Avery