Statistical Multiscaling in Dynamic Ecology: Probing the Long-term Vegetation Process for Patterns of Parameter Oscillation - László Orlóci Ph.d. - Kirjat - CreateSpace Independent Publishing Platf - 9781475071382 - torstai 15. maaliskuuta 2012
Mikäli Kansi ja otsikko eivät täsmää, on otsikko oikein

Statistical Multiscaling in Dynamic Ecology: Probing the Long-term Vegetation Process for Patterns of Parameter Oscillation

László Orlóci Ph.d.

Hinta
€ 36,49

Tilattu etävarastosta

Arvioitu toimitus pe - ti 14. - 25. helmi
Lisää iMusic-toivelistallesi
Eller

Statistical Multiscaling in Dynamic Ecology: Probing the Long-term Vegetation Process for Patterns of Parameter Oscillation

The Book?s conceptualisation of multiscaling theory presents the Next Step in the study of the long-term vegetation process. The context is statistical and the process generating events have proxy in the compositional transitions of the palynological spectra. Familiarity with multiscaling is not a pre-requisite. The reader shall learn from the examples how multiscaling techniques helped to identify the self-similar (fractal) nature of the process, isolate low and high instability phases, locate hotspots of compositional transitions, and link these to delayed climatic effects. He or she shall also learn how to gauge process homeomorphy among sites, isolate the random and directed effects found braided into the process, and do much more within a broad yet formal probabilistic framework. The Book?s contents are taken in part from a graduate course offered in the Ecology program at UFRGS in Porto Alegre, Brazil. The examples use palynological spectra from sites on the Hungarian Great Plain and in the adjacent Carpathian Mountains. Application programs are available from the author.

Media Kirjat     Paperback Book   (Kirja pehmeillä kansilla ja liimatulla selällä)
Julkaisupäivämäärä torstai 15. maaliskuuta 2012
ISBN13 9781475071382
Tuottaja CreateSpace Independent Publishing Platf
Sivujen määrä 102
Mitta 150 × 5 × 225 mm   ·   149 g
Kieli English