Short-Term Load Forecasting by Artificial Intelligent Technologies - Wei-Chiang Hong - Kirjat - Mdpi AG - 9783038975823 - maanantai 28. tammikuuta 2019
Mikäli Kansi ja otsikko eivät täsmää, on otsikko oikein

Short-Term Load Forecasting by Artificial Intelligent Technologies

Hinta
€ 75,99

Tilattu etävarastosta

Arvioitu toimitus ma - ti 5. - 13. tammi 2026
Joululahjoja voi vaihtaa 31.1. asti
Lisää iMusic-toivelistallesi
tai

In last few decades, short-term load forecasting (STLF) has been one of the most important research issues for achieving higher efficiency and reliability in power system operation, to facilitate the minimization of its operation cost by providing accurate input to day-ahead scheduling, contingency analysis, load flow analysis, planning, and maintenance of power systems. There are lots of forecasting models proposed for STLF, including traditional statistical models (such as ARIMA, SARIMA, ARMAX, multi-variate regression, Kalman filter, exponential smoothing, and so on) and artificial-intelligence-based models (such as artificial neural networks (ANNs), knowledge-based expert systems, fuzzy theory and fuzzy inference systems, evolutionary computation models, support vector regression, and so on).

Recently, due to the great development of evolutionary algorithms (EA) and novel computing concepts (e.g., quantum computing concepts, chaotic mapping functions, and cloud mapping process, and so on), many advanced hybrids with those artificial-intelligence-based models are also proposed to achieve satisfactory forecasting accuracy levels. In addition, combining some superior mechanisms with an existing model could empower that model to solve problems it could not deal with before; for example, the seasonal mechanism from the ARIMA model is a good component to be combined with any forecasting models to help them to deal with seasonal problems.


444 pages, 289 Illustrations

Media Kirjat     Paperback Book   (Kirja pehmeillä kansilla ja liimatulla selällä)
Julkaisupäivämäärä maanantai 28. tammikuuta 2019
ISBN13 9783038975823
Tuottaja Mdpi AG
Sivujen määrä 444
Mitta 170 × 244 × 31 mm   ·   948 g
Kieli Englanti  

Lisää tuotteita Wei-Chiang Hong

Näytä kaikki