Dimensionality Reduction for Classification with High-dimensional Data - Siva Tian - Kirjat - VDM Verlag Dr. Müller - 9783639288681 - keskiviikko 25. elokuuta 2010
Mikäli Kansi ja otsikko eivät täsmää, on otsikko oikein

Dimensionality Reduction for Classification with High-dimensional Data

Siva Tian

Hinta
€ 63,49

Tilattu etävarastosta

Arvioitu toimitus ma - ke 4. - 13. elo
Lisää iMusic-toivelistallesi
Eller

Dimensionality Reduction for Classification with High-dimensional Data

High-dimensional data refers to data with a large number of variables. Classifying these data is a difficult problem because the enormous number of variables poses challenges to conventional classification methods and renders many classical techniques impractical. A natural solution is to add a dimensionality reduction step before a classification technique is applied. We Propose three methods to deal with this problem: a simulated annealing (SA) based method, a multivariate adaptive stochastic search (MASS) method, and a functional adaptive classification (FAC) method. The third method considers functional predictors. They all utilize stochastic search algorithms to select a handful of optimal transformation directions from a large number of random directions in each iteration. These methods are designed to mimic variable selection type methods, such as the Lasso, or variable combination methods, such as PCA, or a method that combines the two approaches. We demonstrate the strengths of our methods on an extensive range of simulation and real-world studies.

Media Kirjat     Paperback Book   (Kirja pehmeillä kansilla ja liimatulla selällä)
Julkaisupäivämäärä keskiviikko 25. elokuuta 2010
ISBN13 9783639288681
Tuottaja VDM Verlag Dr. Müller
Sivujen määrä 124
Mitta 226 × 7 × 150 mm   ·   190 g
Kieli English