Stochastic Weight Update in Neural Networks: Theoretical Study of Stochastic Neural  Networks Learning - Peter Sincák - Kirjat - LAP LAMBERT Academic Publishing - 9783659231025 - maanantai 10. syyskuuta 2012
Mikäli Kansi ja otsikko eivät täsmää, on otsikko oikein

Stochastic Weight Update in Neural Networks: Theoretical Study of Stochastic Neural Networks Learning

Peter Sincák

Hinta
DKK 333,52

Tilattu etävarastosta

Arvioitu toimitus ma - ti 11. - 19. elo
Lisää iMusic-toivelistallesi
Eller

Stochastic Weight Update in Neural Networks: Theoretical Study of Stochastic Neural Networks Learning

This book is focused on the modification of the Backpropagation Through Time algorithm and its implementation on the Recurrent Neural Networks. Our work is inspired and motivated by the results of the Salvetti and Wilamowski experiment focused on the introduction of stochasticity into Backpropagation algorithm on experiments with the XOR problem. The stochasticity can be embedded into different parts of the BP algorithm. We introduced and implemented different types of BP algorithm modifications, which gradually add more stochasticity to the BP algorithm. The goal of this book is to prove, that this stochastic modification is able to learn efficiently and the results are comparable to classical implementation. This stochasticity also brings a simpler implementation of the algorithm, than the classical one, which is especially useful on the Recurrent Neural Networks.

Media Kirjat     Paperback Book   (Kirja pehmeillä kansilla ja liimatulla selällä)
Julkaisupäivämäärä maanantai 10. syyskuuta 2012
ISBN13 9783659231025
Tuottaja LAP LAMBERT Academic Publishing
Sivujen määrä 104
Mitta 150 × 6 × 226 mm   ·   173 g
Kieli German  

Näytä kaikki

Lisää tuotteita Peter Sincák