People, Institutions, and Pixels: Linking Remote Sensing and Social Science to Understand Social Adaptation to Environmental Change - Jun Wang - Kirjat - LAP LAMBERT Academic Publishing - 9783659510267 - perjantai 11. heinäkuuta 2014
Mikäli Kansi ja otsikko eivät täsmää, on otsikko oikein

People, Institutions, and Pixels: Linking Remote Sensing and Social Science to Understand Social Adaptation to Environmental Change

Jun Wang

Hinta
₺ 3.106,40

Tilattu etävarastosta

Arvioitu toimitus ke 26. marras - to 4. joulu
Joululahjoja voi vaihtaa 31.1. asti
Lisää iMusic-toivelistallesi
tai

This book presents an interdisciplinary approach to study the dynamics of grassland social-ecological systems on the Mongolian plateau and social adaptation to environmental change. First, we estimated annual grassland net primary productivity (NPP) on the Mongolian plateau and analyzed the dynamics of grassland NPP in response to climate variability. Second, we analyzed the potential for using hyperspectral remote sensing to detect the quantity and quality of dominant grassland communities across an ecological gradient of Inner Mongolian. The dynamics of grassland productivity was interpreted both qualitatively and quantitatively. We used spatial panel data models to identify the factors driving the interannual variability of grassland NPP. Social adaptations to environmental change was studied at both household and community levels. A household survey was implemented across ecological gradients of Mongolia and Inner Mongolia to study livelihood adaptation practices of herders to environmental change. We also built an agent-based model to explore social-ecological outcomes of pasture use under alternative institutional and climatic scenarios.

Media Kirjat     Paperback Book   (Kirja pehmeillä kansilla ja liimatulla selällä)
Julkaisupäivämäärä perjantai 11. heinäkuuta 2014
ISBN13 9783659510267
Tuottaja LAP LAMBERT Academic Publishing
Sivujen määrä 204
Mitta 152 × 229 × 12 mm   ·   322 g
Kieli Saksa  

Näytä kaikki

Lisää tuotteita Jun Wang