Kernel Methods and Hybrid Evolutionary Algorithms in Energy Forecasting - Wei-Chiang Hong - Kirjat - Mdpi AG - 9783038972921 - torstai 18. lokakuuta 2018
Mikäli Kansi ja otsikko eivät täsmää, on otsikko oikein

Kernel Methods and Hybrid Evolutionary Algorithms in Energy Forecasting

Wei-Chiang Hong

Hinta
SEK 519

Tilattu etävarastosta

Arvioitu toimitus pe - ti 4. - 15. heinä
Lisää iMusic-toivelistallesi
Eller

Kernel Methods and Hybrid Evolutionary Algorithms in Energy Forecasting

The development of kernel methods and hybrid evolutionary algorithms (HEAs) to support experts in energy forecasting is of great importance to improving the accuracy of the actions derived from an energy decision maker, and it is crucial that they are theoretically sound. In addition, more accurate or more precise energy demand forecasts are required when decisions are made in a competitive environment. Therefore, this is of special relevance in the Big Data era. These forecasts are usually based on a complex function combination. These models have resulted in over-reliance on the use of informal judgment and higher expense if lacking the ability to catch the data patterns. The novel applications of kernel methods and hybrid evolutionary algorithms can provide more satisfactory parameters in forecasting models.

We aimed to attract researchers with an interest in the research areas described above. Specifically, we were interested in contributions towards the development of HEAs with kernel methods or with other novel methods (e.g., chaotic mapping mechanism, fuzzy theory, and quantum computing mechanism), which, with superior capabilities over the traditional optimization approaches, aim to overcome some embedded drawbacks and then apply these new HEAs to be hybridized with original forecasting models to significantly improve forecasting accuracy.


186 pages, 154 Illustrations

Media Kirjat     Paperback Book   (Kirja pehmeillä kansilla ja liimatulla selällä)
Julkaisupäivämäärä torstai 18. lokakuuta 2018
ISBN13 9783038972921
Tuottaja Mdpi AG
Sivujen määrä 186
Mitta 170 × 244 × 13 mm   ·   408 g
Kieli English  

Näytä kaikki

Lisää tuotteita Wei-Chiang Hong