Online and Adaptive Signature Learning for Intrusion Detection: an Application of Genetic Based Machine Learning - Kamran Shafi - Kirjat - VDM Verlag - 9783639136302 - keskiviikko 25. maaliskuuta 2009
Mikäli Kansi ja otsikko eivät täsmää, on otsikko oikein

Online and Adaptive Signature Learning for Intrusion Detection: an Application of Genetic Based Machine Learning

Kamran Shafi

Hinta
Íkr 11.713,90

Tilattu etävarastosta

Arvioitu toimitus pe - ti 8. - 19. elo
Lisää iMusic-toivelistallesi
Eller

Online and Adaptive Signature Learning for Intrusion Detection: an Application of Genetic Based Machine Learning

This thesis presents the case of dynamically and adaptively learning signatures for network intrusion detection using genetic based machine learning techniques. The two major criticisms of the signature based intrusion detection systems are their i) reliance on domain experts to handcraft intrusion signatures and ii) inability to detect previously unknown attacks or the attacks for which no signatures are available at the time. In this thesis, we present a biologically-inspired computational approach to address these two issues. This is done by adaptively learning maximally general rules, which are referred to as signatures, from network traffic through a supervised learning classifier system. The rules are learnt dynamically (i.e., using machine intelligence and without the requirement of a domain expert), and adaptively (i.e., as the data arrives without the need to relearn the complete model after presenting each data instance to the current model). Our approach is hybrid in that signatures for both intrusive and normal behaviours are learnt.

Media Kirjat     Paperback Book   (Kirja pehmeillä kansilla ja liimatulla selällä)
Julkaisupäivämäärä keskiviikko 25. maaliskuuta 2009
ISBN13 9783639136302
Tuottaja VDM Verlag
Sivujen määrä 284
Mitta 417 g
Kieli English