Data Mining and Liver Fibrosis: Single Stage and Multistage Classification Models for Noninvasive Prediction of Liver Fibrosis Degrees - Ahmed Hashem - Kirjat - LAP LAMBERT Academic Publishing - 9783659141041 - keskiviikko 6. kesäkuuta 2012
Mikäli Kansi ja otsikko eivät täsmää, on otsikko oikein

Data Mining and Liver Fibrosis: Single Stage and Multistage Classification Models for Noninvasive Prediction of Liver Fibrosis Degrees

Ahmed Hashem

Hinta
Íkr 9.898,90

Tilattu etävarastosta

Arvioitu toimitus ke - to 13. - 21. elo
Lisää iMusic-toivelistallesi
Eller

Data Mining and Liver Fibrosis: Single Stage and Multistage Classification Models for Noninvasive Prediction of Liver Fibrosis Degrees

Predicting significant fibrosis or cirrhosis in patients with hepatitis C virus has persistently preoccupied the research agenda of many specialized research centers. Many studies have been conducted to evaluate the use of readily available laboratory tests to predict significant fibrosis or cirrhosis with the purpose to substantially reduce the number of biopsies performed. Although many of them reported significant predictive values of several serum markers for the diagnosis of cirrhosis, none of these diagnostic techniques was successful in accurately predicting early stages of liver fibrosis. Therefore, in this study a single stage classification model and a multistage stepwise classification model based on Neural Network, Decision Tree, Logistic Regression, and Nearest Neighborhood clustering, have been developed to predict individual's liver fibrosis degree. Results showed that the area under the receiver operator curve (AUROC) values of the multistage model ranged from 0.874 to 0.974 which is a higher range than what is reported in current researches with similar conditions.

Media Kirjat     Paperback Book   (Kirja pehmeillä kansilla ja liimatulla selällä)
Julkaisupäivämäärä keskiviikko 6. kesäkuuta 2012
ISBN13 9783659141041
Tuottaja LAP LAMBERT Academic Publishing
Sivujen määrä 272
Mitta 150 × 15 × 226 mm   ·   423 g
Kieli German