New Archive Based Evolutionary Multi-objective Algorithms: Evolutionary Computation - Xavier Esquivel - Kirjat - LAP LAMBERT Academic Publishing - 9783659184963 - lauantai 14. heinäkuuta 2012
Mikäli Kansi ja otsikko eivät täsmää, on otsikko oikein

New Archive Based Evolutionary Multi-objective Algorithms: Evolutionary Computation

Xavier Esquivel

Hinta
NZD 101,75

Tilattu etävarastosta

Arvioitu toimitus ke - to 9. - 17. heinä
Lisää iMusic-toivelistallesi
Eller

New Archive Based Evolutionary Multi-objective Algorithms: Evolutionary Computation

In this work we deal with the design of archive based multi-objective evolutionary algorithms (MOEAs) for the numerical treatment of multi objective optimization problems (MOPs). In particular, we design two generational operators­ one mutation and one crossover operator that are tailored to a class of archiving strategies and propose a new evolutionary strategy. Furthermore, we investigate here two widely used indicators for the evaluation of Multi-objective Evolutionary Algorithms, the Generational Distance (GD) and the Inverted Generational Distance (IGD), with respect to the properties of ametric. We de?ne a new performance indicator, ?p, which can be viewed as an ?averaged Hausdor? distance? between the outcome set and the Pareto front and which is composed of (slight modi?cations of) the well-known indicators Generational Distance (GD) and Inverted Generational Distance (IGD). We will discuss theoretical properties of ?p (as well as for GD and IGD) such as the metric properties and the compliance with state-of-the-art multi-objective evolutionary algorithms (MOEAs).

Media Kirjat     Paperback Book   (Kirja pehmeillä kansilla ja liimatulla selällä)
Julkaisupäivämäärä lauantai 14. heinäkuuta 2012
ISBN13 9783659184963
Tuottaja LAP LAMBERT Academic Publishing
Sivujen määrä 124
Mitta 150 × 7 × 226 mm   ·   203 g
Kieli German