Rules Extraction from   Trained Neural Networks   Using Decision Trees: Comparison of Different Rules Extraction  Algorithms - Koushal Kumar - Kirjat - LAP LAMBERT Academic Publishing - 9783659195754 - keskiviikko 25. heinäkuuta 2012
Mikäli Kansi ja otsikko eivät täsmää, on otsikko oikein

Rules Extraction from Trained Neural Networks Using Decision Trees: Comparison of Different Rules Extraction Algorithms

Koushal Kumar

Hinta
zł 189,90

Tilattu etävarastosta

Arvioitu toimitus ke - to 23. - 31. heinä
Lisää iMusic-toivelistallesi
Eller

Rules Extraction from Trained Neural Networks Using Decision Trees: Comparison of Different Rules Extraction Algorithms

Artificial neural networks(ANN)are very efficient in solving various kinds of problems. But Lack of explanation capability (Black box nature of Neural Networks)is one of the most important reasons why Artificial Neural Networks do not get necessary interest in some parts of industry. In this book we provide an efficient approach to overcome the black box nature of Artificial neural networks. In this approach Artificial neural networks first trained and then combined with decision trees in order to fetch knowledge learn in the training process. After successful training knowledge is extracted from these trained neural networks using decision trees in the forms of IF THEN Rules which we can easily understand as compare to direct neural network outputs. Weka machine learning simulator with version 3.7.5 and Matlab version R2010a is used for experimental purpose. The experimental study is done on bank customer's data which have 12 attributes and 600 instances. The results study show that although neural networks takes much time in training and testing but are more accurate in classification then Decision Trees

Media Kirjat     Paperback Book   (Kirja pehmeillä kansilla ja liimatulla selällä)
Julkaisupäivämäärä keskiviikko 25. heinäkuuta 2012
ISBN13 9783659195754
Tuottaja LAP LAMBERT Academic Publishing
Sivujen määrä 64
Mitta 150 × 4 × 226 mm   ·   113 g
Kieli German