
Vinkkaa tuotetta kavereillesi:
Kinematics and Dynamics of Generalized-symetric Sets: Applications in Number Theory: Theorem of Goldbach and Riemann's Hypothesis
Tanya Mincheva
Tilattu etävarastosta
Kinematics and Dynamics of Generalized-symetric Sets: Applications in Number Theory: Theorem of Goldbach and Riemann's Hypothesis
Tanya Mincheva
The definition of arithmetic progression is viewed as a generalization of the concept of symmetry sets on the real axis. We use the positive whole numbers. Each finite arithmetic progression we call generalized symmetrical multitude We can write a sequence, the elements of which are multitudes- arithmetic progressions. For these multitudes we define KINEMATICS AND DYNAMICS That interpretation is used to prove the theorem of Goldbach In the second part we consider the Riemann hypothesis by analyzing some helix lines. In third part we have a problem by vector optimization in euclidean metric.
Media | Kirjat Paperback Book (Kirja pehmeillä kansilla ja liimatulla selällä) |
Julkaisupäivämäärä | tiistai 18. maaliskuuta 2014 |
ISBN13 | 9783659218828 |
Tuottaja | LAP LAMBERT Academic Publishing |
Sivujen määrä | 72 |
Mitta | 150 × 4 × 225 mm · 125 g |
Kieli | German |
Lisää tuotteita Tanya Mincheva
Katso kaikki joka sisältää Tanya Mincheva ( Esim. Paperback Book )