Variational Framework for Probabilistic Image Segmentation: Theory and Applications - Oscar S. Dalmau Cedeño - Kirjat - LAP LAMBERT Academic Publishing - 9783659219016 - perjantai 24. elokuuta 2012
Mikäli Kansi ja otsikko eivät täsmää, on otsikko oikein

Variational Framework for Probabilistic Image Segmentation: Theory and Applications

Oscar S. Dalmau Cedeño

Hinta
Fr. 64,49

Tilattu etävarastosta

Arvioitu toimitus to 31. heinä - pe 8. elo
Lisää iMusic-toivelistallesi
Eller

Variational Framework for Probabilistic Image Segmentation: Theory and Applications

Image segmentation is an important field of image processing. It consists in partitioning the image into non-overlapping meaningful homogenous regions i.e. flat regions, movement (stereo, optical flow), model-based, texture, color, ... etc. This has been widely used in different applications, for instance, medical images and robot vision. This work focuses on two main themes. The first is related with image segmentation problem and the second is about an application of segmentation methods to image and video editing. In the last decade especial attention has been paid to segmentation methods that produce a measure of belonging to classes, instead of classical segmentation methods that obtains a label map. The first kind of methods is known in the literature as ?soft? segmentation methods while the second group is called as ?hard? segmentation methods. This work presents a general framework for ?soft? segmentation with spatial coherence through a Markov Random Field prior.

Media Kirjat     Paperback Book   (Kirja pehmeillä kansilla ja liimatulla selällä)
Julkaisupäivämäärä perjantai 24. elokuuta 2012
ISBN13 9783659219016
Tuottaja LAP LAMBERT Academic Publishing
Sivujen määrä 260
Mitta 150 × 15 × 226 mm   ·   405 g
Kieli German