Hierarchical Decomposition in Reinforcement Learning - Anders Jonsson - Kirjat - VDM Verlag Dr. Mueller e.K. - 9783836438612 - torstai 10. huhtikuuta 2008
Mikäli Kansi ja otsikko eivät täsmää, on otsikko oikein

Hierarchical Decomposition in Reinforcement Learning

Anders Jonsson

Hinta
NZD 122,10

Tilattu etävarastosta

Arvioitu toimitus ke 23. heinä - pe 1. elo
Lisää iMusic-toivelistallesi
Eller

Hierarchical Decomposition in Reinforcement Learning

Reinforcement learning is an area of artificial intelligence that studies the ability of autonomous agents to improve their behavior in the absence of an informed instructor. Although reinforcement learning has achieved success in a wide range of applications, it becomes less consistent as the size of a task grows. This book attempts to improve the efficiency of reinforcement learning in realistic tasks by identifying a certain type of task structure. A task that displays this type of structure can be decomposed into a hierarchy of subtasks. Each subtask can be simplified using state abstraction so that it is much easier to solve than the original task. Reinforcement learning can be applied to produce solutions to the subtasks, and the solutions can be combined to achieve a solution to the original task. Experimental results indicate that hierarchical decomposition combined with state abstraction can significantly simplify the solution of realistic tasks. The book thus contributes to increasing the potential of reinforcement learning in realistic tasks. The book is directed towards researchers in Artificial Intelligence, but can also be used as a reference by professionals in Robotics and Autonomous Control Engineering.

Media Kirjat     Paperback Book   (Kirja pehmeillä kansilla ja liimatulla selällä)
Julkaisupäivämäärä torstai 10. huhtikuuta 2008
ISBN13 9783836438612
Tuottaja VDM Verlag Dr. Mueller e.K.
Sivujen määrä 140
Mitta 235 g
Kieli English