Information Theoretics Based Sequence Pattern Discriminant Algorithms: Applications in Bioinformatic Data Mining - Tomas Arredondo - Kirjat - LAP Lambert Academic Publishing - 9783838337104 - maanantai 21. kesäkuuta 2010
Mikäli Kansi ja otsikko eivät täsmää, on otsikko oikein

Information Theoretics Based Sequence Pattern Discriminant Algorithms: Applications in Bioinformatic Data Mining 1st edition

Tomas Arredondo

Hinta
€ 69,49

Tilattu etävarastosta

Arvioitu toimitus ke - to 3. - 11. syys
Lisää iMusic-toivelistallesi
Eller

Information Theoretics Based Sequence Pattern Discriminant Algorithms: Applications in Bioinformatic Data Mining 1st edition

This work refers to studies on information-theoretic (IT) aspects of data-sequence patterns and developing discriminant algorithms that enable distinguishing the features of underlying sequence patterns having characteristic, inherent stochastical attributes. Considered in this research are specific details on information-theoretics and entropy considerations vis-á-vis sequence patterns (having stochastical attributes) such as DNA sequences of molecular biology. Applying information-theoretic concepts (essentially in Shannon?s sense), the following distinct sets of metrics are developed and applied in the algorithms developed for data-sequence pattern-discrimination applications: (i) Divergence or cross-entropy algorithms of Kullback-Leibler type and of general Czizár class; (ii) statistical distance measures; (iii) ratio-metrics; (iv) Fisher type linear-discriminant measure; (v) complexity metric based on information redundancy; and a Fuzzy logic based measure. Relevant algorithms are used to test DNA sequences of human and some bacterial organisms.

Media Kirjat     Paperback Book   (Kirja pehmeillä kansilla ja liimatulla selällä)
Julkaisupäivämäärä maanantai 21. kesäkuuta 2010
ISBN13 9783838337104
Tuottaja LAP Lambert Academic Publishing
Sivujen määrä 264
Mitta 225 × 15 × 150 mm   ·   411 g
Kieli German