 
            Vinkkaa tuotetta kavereillesi:
Data Construction Method for Small Sample Sets: Theory and Applications
Chun-jung Huang
Tilattu etävarastosta
 Joululahjoja voi vaihtaa 31.1. asti
                     Joululahjoja voi vaihtaa 31.1. asti
                      
                 Data Construction Method for Small Sample Sets: Theory and Applications
Chun-jung Huang
Data Construction Method (DCM) based on the multiset division is proposed. The DCM can not only generate addition data within the domain value of the given sample for revealing the data's patterns, but also creates the membership function from the generated data for further applications. In this way, the DCM is taken to filling up the information gaps caused by small-sample-sets. To demonstrate the effectiveness of DCM, after presenting the DCM's theoretic background, properties, and algorithm, we compared the DCM with several existing approaches in estimating the population mean and improving the supervised neural network learning performance. The results show that the DCM performs better in a comparative manner. To show its applicability, we have applied the membership function derived from the DCM data to the studies of predicting the severe earthquakes in Taiwan and forecasting the psychotic episode of individual schizophrenics. The results have shown that the DCM can provide appropriate references for prediction from both spatial and temporal small data sets.
| Media | Kirjat Paperback Book (Kirja pehmeillä kansilla ja liimatulla selällä) | 
| Julkaisupäivämäärä | maanantai 30. elokuuta 2010 | 
| ISBN13 | 9783838398372 | 
| Tuottaja | LAP LAMBERT Academic Publishing | 
| Sivujen määrä | 172 | 
| Mitta | 226 × 10 × 150 mm · 274 g | 
| Kieli | German | 
Katso kaikki joka sisältää Chun-jung Huang ( Esim. Paperback Book )
 
         
                