Sparse Learning Under Regularization Framework: Theory and Applications - Michael R. Lyu - Kirjat - LAP LAMBERT Academic Publishing - 9783844330304 - perjantai 15. huhtikuuta 2011
Mikäli Kansi ja otsikko eivät täsmää, on otsikko oikein

Sparse Learning Under Regularization Framework: Theory and Applications

Michael R. Lyu

Hinta
R 1.097,80

Tilattu etävarastosta

Arvioitu toimitus to - pe 3. - 11. heinä
Lisää iMusic-toivelistallesi
Eller

Sparse Learning Under Regularization Framework: Theory and Applications

Regularization is a dominant theme in machine learning and statistics due to its prominent ability in providing an intuitive and principled tool for learning from high-dimensional data. As large-scale learning applications become popular, developing efficient algorithms and parsimonious models become promising and necessary for these applications. Aiming at solving large-scale learning problems, this book tackles the key research problems ranging from feature selection to learning with mixed unlabeled data and learning data similarity representation. More specifically, we focus on the problems in three areas: online learning, semi-supervised learning, and multiple kernel learning. The proposed models can be applied in various applications, including marketing analysis, bioinformatics, pattern recognition, etc.

Media Kirjat     Paperback Book   (Kirja pehmeillä kansilla ja liimatulla selällä)
Julkaisupäivämäärä perjantai 15. huhtikuuta 2011
ISBN13 9783844330304
Tuottaja LAP LAMBERT Academic Publishing
Sivujen määrä 152
Mitta 226 × 9 × 150 mm   ·   244 g
Kieli German  

Näytä kaikki

Lisää tuotteita Michael R. Lyu