Development of Some Lacunary Interpolation by S. F. and Application: Mathematical Science  Numerical Analysis - Karwan Jwamer - Kirjat - LAP LAMBERT Academic Publishing - 9783847325987 - maanantai 16. tammikuuta 2012
Mikäli Kansi ja otsikko eivät täsmää, on otsikko oikein

Development of Some Lacunary Interpolation by S. F. and Application: Mathematical Science Numerical Analysis

Karwan Jwamer

Hinta
€ 44,49

Tilattu etävarastosta

Arvioitu toimitus pe - ma 19. - 29. syys
Lisää iMusic-toivelistallesi
Eller

Development of Some Lacunary Interpolation by S. F. and Application: Mathematical Science Numerical Analysis

The aim of this thesis was the development of the study of lacunary interpolation by spline functions and their applications by changed the boundary condition for quantic and sixtic spline functions, and the algorithm was used to find the new absolute error between the original function and the spline function, and also the error bounded between the derivatives of original function and the derivatives of spline functions. Firstly, the object of this work is to show that the change of the boundary conditions and the class of spline functions have effect on minimizing error bounds theoretically and practically, and for application, the ) NEB( algorithm was used. Secondly, in this study, (0, 4) lacunary interpolation was generalized by quantic spline function to obtain, the existence, uniqueness, and error bounds for the generalized (0, 4) lacunary interpolation by quantic spline. Finally, the lacunary interpolation problem consisted of finding the sixth degree spline of deficiency four, interpolating the data given on the function value with first and fourth order in the interval [0,1]. Also, an extra initial condition was prescribed on the second derivative of the functions.

Media Kirjat     Paperback Book   (Kirja pehmeillä kansilla ja liimatulla selällä)
Julkaisupäivämäärä maanantai 16. tammikuuta 2012
ISBN13 9783847325987
Tuottaja LAP LAMBERT Academic Publishing
Sivujen määrä 84
Mitta 150 × 5 × 226 mm   ·   143 g
Kieli German